Characterization of low molecular weight dissolved natural organic matter along the treatment trait of a waterworks using Fourier transform ion cyclotron resonance mass spectrometry.
نویسندگان
چکیده
Dissolved natural organic matter (DOM), particularly the low molecular weight DOM, can affect the performance of water treatment processes and serve as a main precursor of disinfection by-products (DBPs) during chlorination. In this study, electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) was used to characterize the low molecular weight DOM along the treatment trait of a conventional drinking water treatment plant. The ESI FT-ICR MS data showed that various C, H, O-only class species were the major components in the source water. According to the van Krevelen diagram analysis, lignin- and tannin-like compounds were the most abundant components. Within an isobaric group, the DOM molecules with a high degree of oxidation (high O/C value) were preferentially removed during coagulation, while those with low degree of oxidation were found to be more reactive toward chlorine. In addition, 357 one-chlorine containing products and 199 two-chlorine containing products formed during chlorination were detected in the chlorination effluent sample at a high confidence level. The chlorinated products can be arranged into series, suggesting that they were originated from C, H, O-only precursor compounds, which were in series related by the replacement of CH(4) against oxygen. For the first time, this study explored the behavior of low molecular weight DOM along a drinking water treatment trait on the molecular level, and revealed the presence of abundant unknown chlorinated products, which are probably rich in carboxylic and phenolic groups, in drinking water.
منابع مشابه
High-resolution Fourier transform ion cyclotron resonance mass spectrometry of humic and fulvic acids: improvements and comparisons.
Full structural characterization of complex mixtures such as humic acid extracts has been elusive because of insufficient compound resolution with conventional techniques. Using electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry, we were able to resolve individual compounds within humic and fulvic acid mixtures (mass resolving power approximately 80...
متن کاملProposed Guidelines for Solid Phase Extraction of Suwannee River Dissolved Organic Matter.
This paper proposes improved guidelines for dissolved organic matter (DOM) isolation by solid phase extraction (SPE) with a styrene-divinylbenzene copolymer (PPL) sorbent, which has become an established method for the isolation of DOM from natural waters, because of its ease of application and appreciable carbon recovery. Suwannee River water was selected to systematically study the effects of...
متن کاملCharacterization of oligomeric compounds in secondary organic aerosol using liquid chromatography coupled to electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry.
The components of secondary organic aerosols (SOAs) generated from the gas-phase ozonolysis of two C(10)H(16)-terpenes (alpha-pinene; sabinene) and a cyclic C(6)H(10) alkene (cyclohexene) were characterized by the use of a Fourier transform ion cyclotron mass spectrometer equipped with an electrospray ionization source operated in the negative ion mode. Reversed-phase high-performance liquid ch...
متن کاملFe- and Cu-Complex Formation with Artificial Ligands Investigated by Ultra-High Resolution Fourier-Transform ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS): Implications for Natural Metal-Organic Complex Studies
Citation: Waska H, Koschinsky A and Dittmar T (2016) Feand Cu-Complex Formation with Artificial Ligands Investigated by Ultra-High Resolution Fourier-Transform ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS): Implications for Natural Metal-Organic Complex Studies. Front. Mar. Sci. 3:119. doi: 10.3389/fmars.2016.00119 Feand Cu-Complex Formation with Artificial Ligands Investigated by Ultra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Water research
دوره 46 16 شماره
صفحات -
تاریخ انتشار 2012